3.4.33 \(\int \frac {x^3}{(d+e x^2) \sqrt {a+b x^2+c x^4}} \, dx\) [333]

Optimal. Leaf size=137 \[ \frac {\tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{2 \sqrt {c} e}-\frac {d \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x^2}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x^2+c x^4}}\right )}{2 e \sqrt {c d^2-b d e+a e^2}} \]

[Out]

1/2*arctanh(1/2*(2*c*x^2+b)/c^(1/2)/(c*x^4+b*x^2+a)^(1/2))/e/c^(1/2)-1/2*d*arctanh(1/2*(b*d-2*a*e+(-b*e+2*c*d)
*x^2)/(a*e^2-b*d*e+c*d^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2))/e/(a*e^2-b*d*e+c*d^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {1265, 857, 635, 212, 738} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{2 \sqrt {c} e}-\frac {d \tanh ^{-1}\left (\frac {-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt {a+b x^2+c x^4} \sqrt {a e^2-b d e+c d^2}}\right )}{2 e \sqrt {a e^2-b d e+c d^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])]/(2*Sqrt[c]*e) - (d*ArcTanh[(b*d - 2*a*e + (2*c*d -
b*e)*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x^2 + c*x^4])])/(2*e*Sqrt[c*d^2 - b*d*e + a*e^2])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 1265

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {x^3}{\left (d+e x^2\right ) \sqrt {a+b x^2+c x^4}} \, dx &=\frac {1}{2} \text {Subst}\left (\int \frac {x}{(d+e x) \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )\\ &=\frac {\text {Subst}\left (\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{2 e}-\frac {d \text {Subst}\left (\int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{2 e}\\ &=\frac {\text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x^2}{\sqrt {a+b x^2+c x^4}}\right )}{e}+\frac {d \text {Subst}\left (\int \frac {1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac {-b d+2 a e-(2 c d-b e) x^2}{\sqrt {a+b x^2+c x^4}}\right )}{e}\\ &=\frac {\tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{2 \sqrt {c} e}-\frac {d \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x^2}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x^2+c x^4}}\right )}{2 e \sqrt {c d^2-b d e+a e^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.44, size = 146, normalized size = 1.07 \begin {gather*} -\frac {\frac {2 d \sqrt {-c d^2+b d e-a e^2} \tan ^{-1}\left (\frac {\sqrt {c} \left (d+e x^2\right )-e \sqrt {a+b x^2+c x^4}}{\sqrt {-c d^2+e (b d-a e)}}\right )}{c d^2+e (-b d+a e)}+\frac {\log \left (e \left (b+2 c x^2-2 \sqrt {c} \sqrt {a+b x^2+c x^4}\right )\right )}{\sqrt {c}}}{2 e} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^3/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

-1/2*((2*d*Sqrt[-(c*d^2) + b*d*e - a*e^2]*ArcTan[(Sqrt[c]*(d + e*x^2) - e*Sqrt[a + b*x^2 + c*x^4])/Sqrt[-(c*d^
2) + e*(b*d - a*e)]])/(c*d^2 + e*(-(b*d) + a*e)) + Log[e*(b + 2*c*x^2 - 2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])]/Sq
rt[c])/e

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 204, normalized size = 1.49

method result size
default \(\frac {\ln \left (\frac {\frac {b}{2}+c \,x^{2}}{\sqrt {c}}+\sqrt {c \,x^{4}+b \,x^{2}+a}\right )}{2 e \sqrt {c}}+\frac {d \ln \left (\frac {\frac {2 a \,e^{2}-2 d e b +2 c \,d^{2}}{e^{2}}+\frac {\left (e b -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+2 \sqrt {\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x^{2}+\frac {d}{e}\right )^{2}+\frac {\left (e b -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}}{x^{2}+\frac {d}{e}}\right )}{2 e^{2} \sqrt {\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}}\) \(204\)
elliptic \(\frac {\ln \left (\frac {\frac {b}{2}+c \,x^{2}}{\sqrt {c}}+\sqrt {c \,x^{4}+b \,x^{2}+a}\right )}{2 e \sqrt {c}}+\frac {d \ln \left (\frac {\frac {2 a \,e^{2}-2 d e b +2 c \,d^{2}}{e^{2}}+\frac {\left (e b -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+2 \sqrt {\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x^{2}+\frac {d}{e}\right )^{2}+\frac {\left (e b -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}}{x^{2}+\frac {d}{e}}\right )}{2 e^{2} \sqrt {\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}}\) \(204\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/e*ln((1/2*b+c*x^2)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))/c^(1/2)+1/2*d/e^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*
(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x^2+d/e)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*(c*(x^2+d/e)^2+(b*e-2*c*d)/e
*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^3/(sqrt(c*x^4 + b*x^2 + a)*(x^2*e + d)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 251 vs. \(2 (117) = 234\).
time = 1.03, size = 1100, normalized size = 8.03 \begin {gather*} \left [\frac {\sqrt {c d^{2} - b d e + a e^{2}} c d \log \left (-\frac {8 \, c^{2} d^{2} x^{4} + 8 \, b c d^{2} x^{2} + {\left (b^{2} + 4 \, a c\right )} d^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c d x^{2} + b d - {\left (b x^{2} + 2 \, a\right )} e\right )} \sqrt {c d^{2} - b d e + a e^{2}} + {\left ({\left (b^{2} + 4 \, a c\right )} x^{4} + 8 \, a b x^{2} + 8 \, a^{2}\right )} e^{2} - 2 \, {\left (4 \, b c d x^{4} + {\left (3 \, b^{2} + 4 \, a c\right )} d x^{2} + 4 \, a b d\right )} e}{x^{4} e^{2} + 2 \, d x^{2} e + d^{2}}\right ) + {\left (c d^{2} - b d e + a e^{2}\right )} \sqrt {c} \log \left (-8 \, c^{2} x^{4} - 8 \, b c x^{2} - b^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {c} - 4 \, a c\right )}{4 \, {\left (c^{2} d^{2} e - b c d e^{2} + a c e^{3}\right )}}, -\frac {2 \, \sqrt {-c d^{2} + b d e - a e^{2}} c d \arctan \left (-\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c d x^{2} + b d - {\left (b x^{2} + 2 \, a\right )} e\right )} \sqrt {-c d^{2} + b d e - a e^{2}}}{2 \, {\left (c^{2} d^{2} x^{4} + b c d^{2} x^{2} + a c d^{2} + {\left (a c x^{4} + a b x^{2} + a^{2}\right )} e^{2} - {\left (b c d x^{4} + b^{2} d x^{2} + a b d\right )} e\right )}}\right ) - {\left (c d^{2} - b d e + a e^{2}\right )} \sqrt {c} \log \left (-8 \, c^{2} x^{4} - 8 \, b c x^{2} - b^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {c} - 4 \, a c\right )}{4 \, {\left (c^{2} d^{2} e - b c d e^{2} + a c e^{3}\right )}}, \frac {\sqrt {c d^{2} - b d e + a e^{2}} c d \log \left (-\frac {8 \, c^{2} d^{2} x^{4} + 8 \, b c d^{2} x^{2} + {\left (b^{2} + 4 \, a c\right )} d^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c d x^{2} + b d - {\left (b x^{2} + 2 \, a\right )} e\right )} \sqrt {c d^{2} - b d e + a e^{2}} + {\left ({\left (b^{2} + 4 \, a c\right )} x^{4} + 8 \, a b x^{2} + 8 \, a^{2}\right )} e^{2} - 2 \, {\left (4 \, b c d x^{4} + {\left (3 \, b^{2} + 4 \, a c\right )} d x^{2} + 4 \, a b d\right )} e}{x^{4} e^{2} + 2 \, d x^{2} e + d^{2}}\right ) - 2 \, {\left (c d^{2} - b d e + a e^{2}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{4} + b c x^{2} + a c\right )}}\right )}{4 \, {\left (c^{2} d^{2} e - b c d e^{2} + a c e^{3}\right )}}, -\frac {\sqrt {-c d^{2} + b d e - a e^{2}} c d \arctan \left (-\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c d x^{2} + b d - {\left (b x^{2} + 2 \, a\right )} e\right )} \sqrt {-c d^{2} + b d e - a e^{2}}}{2 \, {\left (c^{2} d^{2} x^{4} + b c d^{2} x^{2} + a c d^{2} + {\left (a c x^{4} + a b x^{2} + a^{2}\right )} e^{2} - {\left (b c d x^{4} + b^{2} d x^{2} + a b d\right )} e\right )}}\right ) + {\left (c d^{2} - b d e + a e^{2}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{4} + b c x^{2} + a c\right )}}\right )}{2 \, {\left (c^{2} d^{2} e - b c d e^{2} + a c e^{3}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(c*d^2 - b*d*e + a*e^2)*c*d*log(-(8*c^2*d^2*x^4 + 8*b*c*d^2*x^2 + (b^2 + 4*a*c)*d^2 - 4*sqrt(c*x^4 +
 b*x^2 + a)*(2*c*d*x^2 + b*d - (b*x^2 + 2*a)*e)*sqrt(c*d^2 - b*d*e + a*e^2) + ((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 +
 8*a^2)*e^2 - 2*(4*b*c*d*x^4 + (3*b^2 + 4*a*c)*d*x^2 + 4*a*b*d)*e)/(x^4*e^2 + 2*d*x^2*e + d^2)) + (c*d^2 - b*d
*e + a*e^2)*sqrt(c)*log(-8*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(c) - 4*a*c
))/(c^2*d^2*e - b*c*d*e^2 + a*c*e^3), -1/4*(2*sqrt(-c*d^2 + b*d*e - a*e^2)*c*d*arctan(-1/2*sqrt(c*x^4 + b*x^2
+ a)*(2*c*d*x^2 + b*d - (b*x^2 + 2*a)*e)*sqrt(-c*d^2 + b*d*e - a*e^2)/(c^2*d^2*x^4 + b*c*d^2*x^2 + a*c*d^2 + (
a*c*x^4 + a*b*x^2 + a^2)*e^2 - (b*c*d*x^4 + b^2*d*x^2 + a*b*d)*e)) - (c*d^2 - b*d*e + a*e^2)*sqrt(c)*log(-8*c^
2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(c) - 4*a*c))/(c^2*d^2*e - b*c*d*e^2 + a
*c*e^3), 1/4*(sqrt(c*d^2 - b*d*e + a*e^2)*c*d*log(-(8*c^2*d^2*x^4 + 8*b*c*d^2*x^2 + (b^2 + 4*a*c)*d^2 - 4*sqrt
(c*x^4 + b*x^2 + a)*(2*c*d*x^2 + b*d - (b*x^2 + 2*a)*e)*sqrt(c*d^2 - b*d*e + a*e^2) + ((b^2 + 4*a*c)*x^4 + 8*a
*b*x^2 + 8*a^2)*e^2 - 2*(4*b*c*d*x^4 + (3*b^2 + 4*a*c)*d*x^2 + 4*a*b*d)*e)/(x^4*e^2 + 2*d*x^2*e + d^2)) - 2*(c
*d^2 - b*d*e + a*e^2)*sqrt(-c)*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2 +
a*c)))/(c^2*d^2*e - b*c*d*e^2 + a*c*e^3), -1/2*(sqrt(-c*d^2 + b*d*e - a*e^2)*c*d*arctan(-1/2*sqrt(c*x^4 + b*x^
2 + a)*(2*c*d*x^2 + b*d - (b*x^2 + 2*a)*e)*sqrt(-c*d^2 + b*d*e - a*e^2)/(c^2*d^2*x^4 + b*c*d^2*x^2 + a*c*d^2 +
 (a*c*x^4 + a*b*x^2 + a^2)*e^2 - (b*c*d*x^4 + b^2*d*x^2 + a*b*d)*e)) + (c*d^2 - b*d*e + a*e^2)*sqrt(-c)*arctan
(1/2*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2 + a*c)))/(c^2*d^2*e - b*c*d*e^2 + a*c*e
^3)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3}}{\left (d + e x^{2}\right ) \sqrt {a + b x^{2} + c x^{4}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(e*x**2+d)/(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral(x**3/((d + e*x**2)*sqrt(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^3}{\left (e\,x^2+d\right )\,\sqrt {c\,x^4+b\,x^2+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/((d + e*x^2)*(a + b*x^2 + c*x^4)^(1/2)),x)

[Out]

int(x^3/((d + e*x^2)*(a + b*x^2 + c*x^4)^(1/2)), x)

________________________________________________________________________________________